Measurable cardinals and category bases
نویسندگان
چکیده
We show that the existence of a non-trivial category base on a set of regular cardinality with each subset being Baire is equiconsistent to the existence of a measurable cardinal.
منابع مشابه
On the Strong Equality between Supercompactness and Strong Compactness
We show that supercompactness and strong compactness can be equivalent even as properties of pairs of regular cardinals. Specifically, we show that if V |= ZFC + GCH is a given model (which in interesting cases contains instances of supercompactness), then there is some cardinal and cofinality preserving generic extension V [G] |= ZFC + GCH in which, (a) (preservation) for κ ≤ λ regular, if V |...
متن کاملIndestructibility and destructible measurable cardinals
Say that κ’s measurability is destructible if there exists a <κ-closed forcing adding a new subset of κ which destroys κ’s measurability. For any δ, let λδ =df The least beth fixed point above δ. Suppose that κ is indestructibly supercompact and there is a measurable cardinal λ > κ. It then follows that A1 = {δ < κ | δ is measurable, δ is not a limit of measurable cardinals, δ is not δ+ strongl...
متن کاملOn the indestructibility aspects of identity
We investigate the indestructibility properties of strongly compact cardinals in universes where strong compactness suffers from identity crisis. We construct an iterative poset that can be used to establish Kimchi-Magidor theorem from [22], i.e., that the first n strongly compact cardinals can be the first n measurable cardinals. As an application, we show that the first n strongly compact car...
متن کاملPatterns of Compact Cardinals
We show relative to strong hypotheses that patterns of compact cardinals in the universe, where a compact cardinal is one which is either strongly compact or supercompact, can be virtually arbitrary. Specifically, we prove if V |= “ZFC + Ω is the least inaccessible limit of measurable limits of supercompact cardinals + f : Ω → 2 is a function”, then there is a partial ordering P ∈ V so that for...
متن کاملSequential Continuity and Submeasurable Cardinals
Submeasurable cardinals are deened in a similar way as measurable cardinals are. Their characterizations are given by means of sequentially continuous pseudonorms (or homomorphisms) on topological groups and of sequentially continuous (or uniformly continuous) functions on Cantor spaces (for that purpose it is proved that if a complete Boolean algebra admits a nonconstant sequentially continuou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010